Polar Kerr effect and time reversal symmetry breaking in bilayer graphene.

نویسندگان

  • Rahul Nandkishore
  • Leonid Levitov
چکیده

The unique sensitivity of optical response to different types of symmetry breaking can be used to detect and identify spontaneously ordered many-body states in bilayer graphene. We predict a strong response at optical frequencies, sensitive to electronic phenomena at low energies, which arises because of nonzero interband matrix elements of the electric current operator. In particular, the polar Kerr rotation and reflection anisotropy provide fingerprints of the quantum anomalous Hall state and the nematic state, characterized by spontaneously broken time-reversal symmetry and lattice rotation symmetry, respectively. These optical signatures, which undergo a resonant enhancement in the near-infrared regime, lie well within reach of existing experimental techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers

Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr ef...

متن کامل

Condensed Matter Seminar

Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of 3D crystals with bulk inversion symmetry. Recently, spontaneous TRS breaking was observed in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel [1]. The evidence comes from the onset of the polar Kerr effect at the supercond...

متن کامل

Broken-symmetry states in doubly gated suspended bilayer graphene.

The single-particle energy spectra of graphene and its bilayer counterpart exhibit multiple degeneracies that arise through inherent symmetries. Interactions among charge carriers should spontaneously break these symmetries and lead to ordered states that exhibit energy gaps. In the quantum Hall regime, these states are predicted to be ferromagnetic in nature, whereby the system becomes spin po...

متن کامل

Time-reversal symmetry breaking by a (d+id) density-wave state in underdoped cuprate superconductors.

It was proposed that the id(x(2)-y(2)) density-wave state (DDW) may be responsible for the pseudogap behavior in the underdoped cuprates. Here we show that the admixture of a small d(xy) component to the DDW state breaks the symmetry between the counterpropagating orbital currents of the DDW state and, thus, violates the macroscopic time-reversal symmetry. This symmetry breaking results in a no...

متن کامل

Quantum anomalous Hall state in bilayer graphene

Citation Nandkishore, Rahul, and Leonid Levitov. "Quantum anomalous Hall state in bilayer graphene. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We present a sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 107 9  شماره 

صفحات  -

تاریخ انتشار 2011